Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | \(-h_{3}+h_{2}\) | \(-h_{6}-2h_{5}-3h_{4}-2h_{2}+h_{1}\) | \(g_{7}\) | \(g_{9}\) | \(g_{2}\) | \(g_{3}\) | \(g_{16}\) | \(g_{12}\) | \(g_{13}\) | \(g_{8}\) |
weight | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{3}\) | \(\omega_{4}\) | \(\omega_{4}\) | \(\omega_{1}+\omega_{3}\) | \(\omega_{1}+\omega_{4}\) | \(\omega_{3}+\omega_{4}\) | \(2\omega_{4}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(0\) | \(0\) | \(\omega_{1}+4\psi_{1}-2\psi_{2}\) | \(\omega_{3}-4\psi_{1}+2\psi_{2}\) | \(\omega_{4}+6\psi_{1}-10\psi_{2}\) | \(\omega_{4}-6\psi_{1}+10\psi_{2}\) | \(\omega_{1}+\omega_{3}\) | \(\omega_{1}+\omega_{4}-2\psi_{1}+8\psi_{2}\) | \(\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}\) | \(2\omega_{4}\) |
Isotypical components + highest weight | \(\displaystyle V_{0} \) → (0, 0, 0, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+4\psi_{1}-2\psi_{2}} \) → (1, 0, 0, 0, 4, -2) | \(\displaystyle V_{\omega_{3}-4\psi_{1}+2\psi_{2}} \) → (0, 0, 1, 0, -4, 2) | \(\displaystyle V_{\omega_{4}+6\psi_{1}-10\psi_{2}} \) → (0, 0, 0, 1, 6, -10) | \(\displaystyle V_{\omega_{4}-6\psi_{1}+10\psi_{2}} \) → (0, 0, 0, 1, -6, 10) | \(\displaystyle V_{\omega_{1}+\omega_{3}} \) → (1, 0, 1, 0, 0, 0) | \(\displaystyle V_{\omega_{1}+\omega_{4}-2\psi_{1}+8\psi_{2}} \) → (1, 0, 0, 1, -2, 8) | \(\displaystyle V_{\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}} \) → (0, 0, 1, 1, 2, -8) | \(\displaystyle V_{2\omega_{4}} \) → (0, 0, 0, 2, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{3}\) | \(\omega_{3}\) \(\omega_{2}-\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | \(\omega_{4}\) \(-\omega_{4}\) | \(\omega_{4}\) \(-\omega_{4}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(\omega_{1}+\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{4}\) \(\omega_{1}-\omega_{4}\) \(-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{4}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{3}-\omega_{4}\) | \(\omega_{3}+\omega_{4}\) \(\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{4}\) \(-\omega_{1}-\omega_{4}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(0\) | \(\omega_{1}+4\psi_{1}-2\psi_{2}\) \(-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}\) \(-\omega_{2}+\omega_{3}+4\psi_{1}-2\psi_{2}\) \(-\omega_{3}+4\psi_{1}-2\psi_{2}\) | \(\omega_{3}-4\psi_{1}+2\psi_{2}\) \(\omega_{2}-\omega_{3}-4\psi_{1}+2\psi_{2}\) \(\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}\) \(-\omega_{1}-4\psi_{1}+2\psi_{2}\) | \(\omega_{4}+6\psi_{1}-10\psi_{2}\) \(-\omega_{4}+6\psi_{1}-10\psi_{2}\) | \(\omega_{4}-6\psi_{1}+10\psi_{2}\) \(-\omega_{4}-6\psi_{1}+10\psi_{2}\) | \(\omega_{1}+\omega_{3}\) \(-\omega_{1}+\omega_{2}+\omega_{3}\) \(\omega_{1}+\omega_{2}-\omega_{3}\) \(-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+2\omega_{2}-\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(\omega_{1}-2\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{1}-\omega_{2}-\omega_{3}\) \(-\omega_{1}-\omega_{3}\) | \(\omega_{1}+\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{1}+\omega_{2}+\omega_{4}-2\psi_{1}+8\psi_{2}\) \(\omega_{1}-\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{2}+\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{1}+\omega_{2}-\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{2}+\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}\) \(-\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}\) | \(\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}\) \(\omega_{2}-\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}\) \(\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}\) \(\omega_{1}-\omega_{2}+\omega_{4}+2\psi_{1}-8\psi_{2}\) \(\omega_{2}-\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}\) \(-\omega_{1}+\omega_{4}+2\psi_{1}-8\psi_{2}\) \(\omega_{1}-\omega_{2}-\omega_{4}+2\psi_{1}-8\psi_{2}\) \(-\omega_{1}-\omega_{4}+2\psi_{1}-8\psi_{2}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{0}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{3}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{3}-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{2}-\omega_{3}-4\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{4}+6\psi_{1}-10\psi_{2}}\oplus M_{-\omega_{4}+6\psi_{1}-10\psi_{2}}\) | \(\displaystyle M_{\omega_{4}-6\psi_{1}+10\psi_{2}}\oplus M_{-\omega_{4}-6\psi_{1}+10\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{-\omega_{1}+\omega_{2}+\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{\omega_{1}-\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{2}-\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{-\omega_{1}+\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{2}-\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{-\omega_{1}-\omega_{4}+2\psi_{1}-8\psi_{2}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{\omega_{1}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}+4\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}+\omega_{2}+4\psi_{1}-2\psi_{2}} \oplus M_{-\omega_{3}+4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{3}-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-4\psi_{1}+2\psi_{2}}\oplus M_{\omega_{2}-\omega_{3}-4\psi_{1}+2\psi_{2}} \oplus M_{-\omega_{1}-4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{\omega_{4}+6\psi_{1}-10\psi_{2}}\oplus M_{-\omega_{4}+6\psi_{1}-10\psi_{2}}\) | \(\displaystyle M_{\omega_{4}-6\psi_{1}+10\psi_{2}}\oplus M_{-\omega_{4}-6\psi_{1}+10\psi_{2}}\) | \(\displaystyle M_{\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-2\omega_{2}+\omega_{3}}\oplus 3M_{0}\oplus M_{-\omega_{1}+2\omega_{2}-\omega_{3}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}}\oplus M_{\omega_{2}-2\omega_{3}} \oplus M_{-\omega_{1}-\omega_{3}}\) | \(\displaystyle M_{\omega_{1}+\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{-\omega_{1}+\omega_{2}+\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{3}+\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{\omega_{1}-\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{2}+\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}-2\psi_{1}+8\psi_{2}}\oplus M_{-\omega_{3}-\omega_{4}-2\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{2}-\omega_{3}+\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{-\omega_{1}+\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{4}+2\psi_{1}-8\psi_{2}} \oplus M_{\omega_{2}-\omega_{3}-\omega_{4}+2\psi_{1}-8\psi_{2}}\oplus M_{-\omega_{1}-\omega_{4}+2\psi_{1}-8\psi_{2}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) |